If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+49x=98
We move all terms to the left:
6x^2+49x-(98)=0
a = 6; b = 49; c = -98;
Δ = b2-4ac
Δ = 492-4·6·(-98)
Δ = 4753
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4753}=\sqrt{49*97}=\sqrt{49}*\sqrt{97}=7\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-7\sqrt{97}}{2*6}=\frac{-49-7\sqrt{97}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+7\sqrt{97}}{2*6}=\frac{-49+7\sqrt{97}}{12} $
| 6y^2-5y-42=0 | | (x+8)^2-9=0 | | (x+8)(x+8)-9=0 | | 6x^2+25=75 | | 10x+28=4x+2 | | 2x^3-3x^2+6x-4=0 | | 192+6x=228 | | 175+5x=200 | | 91+4x=107 | | 61+3x=70 | | y-(y+12=-35 | | 121^3x=11^x+1 | | a^2=a+8 | | V=12.56•h | | 2y=7y² | | 7y²=2y | | 33-4x=5 | | 33-4x=5 | | 9t-8=4t-6 | | 5x/24=10+5x | | 0.7x-0.88=0.02x+0.12-0.3207x | | 2x+15=12x-8 | | 5+7+x=13 | | 4(7y+19)-5(3y-1)+4y=-4 | | -4,12+x=-8,32 | | 2x/3+5x=17 | | 3(4x-7)-5(3x-4)=17 | | x/2=5x= | | 3x-5x=5x-1 | | 2x+1=9x+4 | | (2x-1)²-4x²+5=0 | | 12x−5=43. |